首页> 外文OA文献 >A neural network combined with a three-dimensional finite element method applied to optimize eddy current and temperature distributions of traveling wave induction heating system
【2h】

A neural network combined with a three-dimensional finite element method applied to optimize eddy current and temperature distributions of traveling wave induction heating system

机译:应用神经网络结合三维有限元方法优化行波感应加热系统的涡流和温度分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, neural networks with a finite element method (FEM) were introduced to predict eddy current distributions on the continuously moving thin conducting strips in traveling wave induction heating (TWIH) equipments. A method that combines a neural network with a finite element method (FEM) is proposed to optimize eddy current distributions of TWIH heater. The trained network used for tested examples shows quite good accuracy of the prediction. The results have then been used with reference to a double-side TWIH in order to analyze the distributions of the magnetic field and eddy current intensity, which accelerates the iterative solution process for the nonlinear coupled electromagnetic matters. The FEM computation of temperature converged conspicuously faster using the prediction results as initial values than using the zero values, and the number of iterations is reduced dramatically. Simulation results demonstrate the effectiveness and characteristics of the proposed method.
机译:本文介绍了一种用有限元方法(FEM)进行神经网络预测行波感应加热(TWIH)设备中连续运动的薄导电带上的涡流分布的方法。提出了一种将神经网络与有限元方法(FEM)相结合的方法,以优化TWIH加热器的涡流分布。用于测试示例的经过训练的网络显示出很好的预测准确性。然后将结果用于双面TWIH,以分析磁场和涡流强度的分布,从而加快了非线性耦合电磁物质的迭代求解过程。使用预测结果作为初始值,温度的FEM计算收敛明显快于使用零值,并且迭代次数显着减少。仿真结果证明了该方法的有效性和特点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号